PARTICIPA

PARTICIPA

martes, 6 de abril de 2021

Susceptibility of Circulating SARS-CoV-2 Variants to Neutralization | NEJM


Susceptibility of Circulating SARS-CoV-2 Variants to Neutralization

To the Editor:

The emergence of two variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) — B.1.1.7 in the United Kingdom and B.1.351 in South Africa — has aroused concern that these variants may escape immunity resulting from either previous infection or vaccination. In an attempt to measure the resistance of these variants to neutralization elicited by infection or vaccination, we generated recombinant vesicular stomatitis virus–based SARS-CoV-2 pseudoviruses containing the spike protein of the Wuhan-1 reference strain (wild-type), the D614G mutation, and the B.1.1.7 and B.1.351 variants. (Details regarding the recombination process are provided in the Supplementary Appendix, available with the full text of this letter at NEJM.org.)

Neutralization of SARS-CoV-2 Pseudoviruses in Convalescent and Vaccinee Serum Samples.

We next evaluated pseudovirus resistance to neutralization using convalescent serum obtained from 34 patients 5 months after infection with coronavirus disease 2019 (Covid-19) and serum from 50 participants obtained 2 to 3 weeks after receipt of the second dose of inactivated-virus vaccines — BBIBP-CorV (Sinopharm)1 or CoronaVac (Sinovac)2 — which were developed in China (Table S1 in the Supplementary Appendix). We first determined the serum neutralizing-antibody titer against wild-type pseudovirus and observed similar geometric mean titers (GMTs) in serum obtained from convalescent patients and from vaccinees (), which suggested a low antibody response after two-dose inoculation induced by BBIBP-CorV or CoronaVac.1,2 Notably, undetectable neutralization titers were seen in 4 of 34 convalescent serum samples, in 6 of 25 BBIBP-CorV serum samples, and in 4 of 25 CoronaVac serum samples.

We next assessed the neutralizing activity of convalescent serum and vaccinee serum against D614G, B.1.1.7, and B.1.351 variants as compared with wild-type pseudovirus. The convalescent serum was significantly more effective (by a factor of 2.4; 95% confidence interval [CI], 1.9 to 3.0) in neutralizing the D614G pseudovirus, had a similar effect to that of the wild-type virus in neutralizing the B.1.1.7 variant, and was significantly less effective (by a factor of 0.5; 95% CI, 0.4 to 0.7) in neutralizing the B.1.351 pseudovirus (). Moreover, 9 of 30 convalescent serum samples showed complete loss of neutralizing activity against B.1.351. For the BBIBP-CorV vaccinee serum samples, although the GMTs of neutralization against the variants were not significantly different from the GMTs against the wild-type virus, 20 serum samples showed complete or partial loss of neutralization against B.1.351 (). For the CoronaVac vaccinee serum samples, we observed a marked decrease in the GMTs in the serum neutralization of B.1.1.7 (by a factor of 0.5; 95% CI, 0.3 to 0.7) and B.1.351 (by a factor of 0.3; 95% CI, 0.2 to 0.4). In addition, most of the serum samples showed complete or partial loss of neutralization against B.1.351 ().

Our findings suggest that B.1.1.7 showed little resistance to the neutralizing activity of convalescent or vaccinee serum, whereas B.1.351 showed more resistance to the neutralization of both convalescent serum (by a factor of 2) and vaccinee serum (by a factor of 2.5 to 3.3) than the wild-type virus. Most of the vaccinee serum samples that were tested lost neutralizing activity, a finding that was consistent with the results of other recent studies of neutralization by convalescent serum or serum obtained from recipients of messenger RNA or BBIBP-CorV vaccines.3-5 Our findings also highlight the importance of sustained viral monitoring and evaluation of the protective efficacy of vaccines in areas where variants are circulating.

Guo-Lin Wang, Ph.D.
Beijing Institute of Microbiology and Epidemiology, Beijing, China

Zhuang-Ye Wang, B.Med.
Dezhou Center for Disease Control and Prevention, Dezhou, China

Li-Jun Duan, B.Sc.
Beijing Institute of Microbiology and Epidemiology, Beijing, China

Qing-Chuan Meng, B.Med.
Ningjin County Community Health Service Center, Dezhou, China

Ming-Dong Jiang, M.Med.
Jing Cao, M.Med.
Dezhou Center for Disease Control and Prevention, Dezhou, China

Lin Yao, B.Med.
Ka-Li Zhu, B.Med.
Wu-Chun Cao, Ph.D.
Mai-Juan Ma, Ph.D.
Beijing Institute of Microbiology and Epidemiology, Beijing, China
caowuchun@126.com, mjma@163.com

Supported by a grant (L202038) from the Beijing Natural Science Foundation and a grant (81773494) from the Natural Science Foundation of China, both to Dr. Ma.

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

This letter was published on April 6, 2021, at NEJM.org.

Dr. G.-L. Wang and Mr. Z.-Y. Wang contributed equally to this letter.


No hay comentarios:

Publicar un comentario

Danos tu opinion, enriquece el post.