PARTICIPA

PARTICIPA

miércoles, 31 de marzo de 2021

Fwd: fisiopatologia y dx de trombocitopenia tras vacuna astra zeneca mecanismo;


Overview | COVID-19 rapid guideline: managing COVID-19 | Guidance | NICE


Guidance

This guideline covers the management of COVID-19 for children, young people and adults in all care settings. It brings together our existing recommendations on managing COVID-19 so that healthcare staff and those planning and delivering services can find and use them more easily. The guideline includes new recommendations on therapeutics, and we will update the guideline further as new evidence emerges.

The guideline updates and replaces our COVID-19 rapid guidelines on critical care in adults, managing symptoms (including at the end of life) in the community, managing suspected or confirmed pneumonia in adults in the community, acute myocardial injury, antibiotics for pneumonia in adults in hospital, acute kidney injury in hospital, and reducing the risk of venous thromboembolism in over 16s with COVID-19.

We have published this guideline in MAGICapp, a global evidence ecosystem already being used by key partners such as the Australian Taskforce for COVID-19 and the World Health Organization. The MAGICapp platform allows the efficient sharing of evidence between guideline developers from around the world. This means NICE can develop and update its COVID-19 guidance more quickly and efficiently as new evidence is assessed. We collaborated with the Australian National COVID-19 Clinical Evidence Taskforce during development of the guideline, and acknowledge their contribution to identifying and reviewing the evidence for therapeutics.

To access the guideline in MAGICapp, select the topic area you are interested in.

The guideline is part of a suite of products that NICE has developed to support healthcare staff during the pandemic. See our list of COVID guidelines.

Disclaimer

The MAGICapp publication platform is owned and operated by the MAGIC Evidence Ecosystem Foundation. While certain NICE content may be available on this platform, NICE is not responsible for the operation of this site, including the collection and use of user data, and you visit this site entirely at your own risk.

Your responsibility

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals and practitioners are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or the people using their service. It is not mandatory to apply the recommendations, and the guideline does not override the responsibility to make decisions appropriate to the circumstances of the individual, in consultation with them and their families and carers or guardian. 

All problems (adverse events) related to a medicine or medical device used for treatment or in a procedure should be reported to the Medicines and Healthcare products Regulatory Agency using the Yellow Card Scheme.

Local commissioners and providers of healthcare have a responsibility to enable the guideline to be applied when individual professionals and people using services wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with complying with those duties.

Commissioners and providers have a responsibility to promote an environmentally sustainable health and care system and should assess and reduce the environmental impact of implementing NICE recommendations wherever possible.

Delayed Second Dose versus Standard Regimen for Covid-19 Vaccination | NEJM

https://www.nejm.org/doi/10.1056/NEJMclde2101987


Enviado desde mi iPhone

Association between telehealth use and general practitioner characteristics during COVID-19: findings from a nationally representative survey of Australian doctors | BMJ Open

https://bmjopen.bmj.com/content/11/3/e046857


Enviado desde mi iPhone

martes, 30 de marzo de 2021

Antibody evasion by the P.1 strain of SARS-CoV-2: Cell


Antibody evasion by the P.1 strain of SARS-CoV-2

P.1, B.1.351 and B.1.1.7 partially or fully escape most VH3-53 antibodies.
Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

sábado, 27 de marzo de 2021

Remote management of covid-19 using home pulse oximetry and virtual ward support | The BMJ


Remote management of covid-19 using home pulse oximetry and virtual ward support

  1. Trisha Greenhalgh, professor1,  
  2. Matthew Knight, consultant respiratory physician2 3,  
  3. Matt Inda-Kim, consultant acute physician4 5,  
  4. Naomi J Fulop, professor6,  
  5. Jonathan Leach, general practitioner7,  
  6. Cecilia Vindrola-Padros, postdoctoral researcher6
  1. Correspondence to T Greenhalgh trish.greenhalgh@phc.ox.ac.uk

What you need to know

  • Pulse oximeters used at home can detect hypoxia associated with acute covid-19

  • Home oximetry requires clinical support, such as regular phone contact from a health professional in a virtual ward setting

  • More research is needed to understand the safety and effectiveness of home oximetry and to optimise service models and referral pathways


miércoles, 24 de marzo de 2021

RV: ANTIGENOS Y VIAJES




 

lunes, 22 de marzo de 2021

postacute covid-19 syndrome


respuesta a FAQS DE VACUNAS COVID EN NEJM

 https://www.nejm.org/covid-vaccine/faq

FANTASTICO HILO DE TWEET SOBRE INMUNIDAD VACUNAS Y NUEVAS VARIANTES/ ACUDIR AL HILO DONDE SE MUESTRA IMAGENES

Jose Gomez Rial @gomez_rial5. aCUDIR A ESTE POST donde el Dr Gomez Rial en su hilo con imagenes y articulos hace una gran ejercicio explicativo.

  Gran parte de las vacunas actuales centran su protección frente a la proteína S del SARS-Cov2. ¿Por qué una sola proteína y no todo el virus (virus inactivado)?
 La vacunología avanza hacia estrategias que focalizan la respuesta protectora en una proteína (target) para no "diluir" la respuesta inmune en otras proteínas consideradas no-protectoras. El futuro incluso pasa por incluir solo partes de proteínas (epítopos) 
 En el caso del SARS-Cov2 se conocía por otros coronavirus cual era la proteína "target" y cual tenía que ser el objetivo de las vacunas, por eso gran parte de las vacunas actuales se centran en esta proteína con diferentes estrategias (ARNm, vector viral, etc 
 Ahora bien, ¿debemos estar preocupados por las variaciones en esa proteína y la efectividad de las vacunas? ¿Puede el coronavirus evadir la respuesta inmune a las vacunas tan rápido y fácil? La proteína S del coronavirus está formada por 1273 aminoácidos organizados en tres dominios principales: S1, S2 y RBD. Cuando las vacunas presentan esta proteína S a nuestras células inmunitarias, la proteína se "procesa" en pequeñas regiones de aminoácidos (epítopos) de un tamaño de entre 8-9 aa (célula T-CD8+) y 12-15 aa (célula T-CD4+) 1 3 Por tanto, aunque siempre algunos epítopos son mas inmunogénicos que otros (inmunodominancia) se pueden generar potencialmente aprox 120 clones celulares diferentes frente a la proteína S Identificar los clones dominantes es vital para el diseño de vacunas futuras y es un proyecto apasionante en el que junto con otros centros en el mundo, la empresa biotecnologica Adaptive y Microsoft, estamos trabajando: ImmuneRACE The ImmuneRACE study is designed to help researchers understand the immune response to COVID-19. This is critically important because the immune system may be able to tell us important information... immunerace.adaptivebiotech.com Por otro lado tenemos los epítopos que generan respuesta de Anticuerpos, que son grupos de 5-8 aa siempre en superficie externa de la proteína S y que son muy importantes porque bloquean la entrada del virus en la célula (Ac neutralizantes) Ahora bien, ¿pueden las variantes del virus cambiando unos pocos aa de su proteína S evadir la respuesta inmunitaria generada por las vacunas? En mi humilde opinión, en tan poco espacio de tiempo es poco probable De momento pocas variantes han mutado aa en la proteína S, preocupan tres sobre todo que lo han hecho y que están en todos los medios: B.1.1.7 (UK), B.1.35.1 (South Africa) y P.1 (Brazil) Todas ellas tienen en común la mutación N501Y (cambio de una Asn a una Tyr) en la posición 501, que además de hacer al virus más infectivo, han salido varios estudios que muestran que evaden la respuesta de Ac neutralizantes de algunas vacunas De momento esto no es muy preocupante dado que aparte de contar con la respuesta celular, la nueva respuesta de Ac generada en caso de infección se modularía a las nuevas variantes, por un proceso evolutivo de nuestro SI denominado Maduración de la afinidad. La respuesta de Ac por parte de las células B se adapta y se hace con más afinidad cada vez que las células se enfrentan al virus, mediante pequeñas mutaciones en la región variable de los Ac (nuestro SI también sabe mutar para adaptarse a los cambios) ¿Cuándo tendríamos que preocuparnos? Si la pandemia sigue sin control, si las vacunas no llegan a la población, el virus puede seguir mutando y con el tiempo acumular tantas mutaciones en la proteína S que evadirían por completo la respuesta de las vacunas Para tranquilidad, la generación de "variantes de escape" a las vacunas no es muy habitual, mucho menos habitual que la resistencia a los Antibióticos por ejemplo (otra pandemia en ciernes) Por eso, nuestro objetivo ahora mismo tiene que ser avanzar en el proceso de vacunación a nivel mundial, para evitar darle tiempo al virus a que mute completamente y se convierte en un nuevo "SARS-Cov3" Hacer vigilancia epidemiológica de la circulación de las nuevas variantes es importante, pero sin caer en la "mediatización" y alarmismo por las nuevas variantes, que por el momento han demostrado ser mas contagiosas pero no han demostrado ser "de escape" Por eso y aunque cada día sale un nuevo estudio de "tal variante" que escapa a la neutralización de "tal vacuna", pensar que de momento nuestro sistema inmune con ayuda de las vacunas puede controlar el virus porque cuenta con la potente respuesta celular que junto con una nueva respuesta de Ac mas adaptados a las nuevas variantes, controlaría la respuesta al virus. Pero no podemos darle muchas más alegrías al virus dejando que pase el tiempo sin vacunar a la población. Gracias por haber llegado al final

viernes, 19 de marzo de 2021

SARS-CoV-2 transmission without symptoms | Science


Impact of the COVID-19 Vaccine on Asymptomatic Infection Among Patients Undergoing Pre-Procedural COVID-19 Molecular Screening | Clinical Infectious Diseases | Oxford Academic


Impact of the COVID-19 Vaccine on Asymptomatic Infection Among Patients Undergoing Pre-Procedural COVID-19 Molecular Screening

Background

Several vaccines are now clinically available under emergency use authorization in the United States and have demonstrated efficacy against symptomatic COVID-19. The impact of vaccines on asymptomatic SARS-CoV-2 infection is largely unknown.

Methods

We conducted a retrospective cohort study of consecutive, asymptomatic adult patients (n = 39,156) within a large United States healthcare system who underwent 48,333 pre-procedural SARS-CoV-2 molecular screening tests between December 17, 2020 and February 8, 2021. The primary exposure of interest was vaccination with at least one dose of an mRNA COVID-19 vaccine. The primary outcome was relative risk of a positive SARS-CoV-2 molecular test among those asymptomatic persons who had received at least one dose of vaccine, as compared to persons who had not received vaccine during the same time period. Relative risk was adjusted for age, sex, race/ethnicity, patient residence relative to the hospital (local vs. non-local), healthcare system regions, and repeated screenings among patients using mixed effects log-binomial regression.

Results

Positive molecular tests in asymptomatic individuals were reported in 42 (1.4%) of 3,006 tests performed on vaccinated patients and 1,436 (3.2%) of 45,327 tests performed on unvaccinated patients (RR=0.44 95% CI: 0.33-0.60; p<.0001). Compared to unvaccinated patients, the risk of asymptomatic SARS-CoV-2 infection was lower among those >10 days after 1 st dose (RR=0.21; 95% CI: 0.12-0.37; p<.0001) and >0 days after 2 nd dose (RR=0.20; 95% CI: 0.09-0.44; p<.0001) in the adjusted analysis.

Conclusions

COVID-19 vaccination with an mRNA-based vaccine showed a significant association with a reduced risk of asymptomatic SARS-CoV-2 infection as measured during pre-procedural molecular screening. The results of this study demonstrate the impact of the vaccines on reduction in asymptomatic infections supplementing the randomized trial results on symptomatic patients.

actualizacion insuficiencia cardiaca boletin vasco

sábado, 13 de marzo de 2021

jueves, 4 de marzo de 2021